Position and Orientation Estimation of Omniwheel Robot Using IMU

Main Article Content

Muhammad Naufal Yaafi
Firman Hermanto
Efrizon
Reza Nandika
Iqbal Kurniawan Asmar P

Abstract

This research successfully designed and implemented a position and direction estimation system (odometry) on a four-wheeled omnidirectional robot by integrating a rotary encoder sensor and an Inertial Measurement Unit (IMU). The goal is to create autonomous robots capable of moving holonomically (in any direction without changing body orientation) with high accuracy for the ABU Robocon 2024 competition. The research method uses a Research and Development (R&D) approach by building a prototype of a robot controlled by the Arduino Mega 2560. The navigation control and trajectory tracking system is designed with a gyrodometry algorithm that fuses position data from two rotary encoders (X and Y axes) and orientation data from MPU6050 IMU sensors. The test results showed that the robot was able to follow a rectangular pattern trajectory (1000 mm x 500 mm) with a maximum position error of 50 mm on the X axis and 70 mm on the Y axis. The discussion of results identified that the integration of encoder and IMU data through complementary filters successfully improved the system's resistance to gyroscope drift and wheel slippage. It was concluded that this prototype of an omnidirectional robot with a fusion sensor-based odometry system has met the criteria of sufficient stability and accuracy for robotics competition applications.

Article Details

Section
Articles

References

[1] S. J. Johnston et al., “City Scale Particulate Matter Monitoring Using LoRaWAN Based Air Quality IoT Devices,” pp. 1–20, doi: 10.3390/s19010209.
[2] J. Jurnal et al., “Penerapan Rotary Encoder sebagai Sistem Odometry untuk Navigasi Robot Sepak Bola Beroda,” 2025.
[3] I. K. Wibowo et al., “Penentuan Posisi Robot Menggunakan Odometry Omniwheel,” pp. 8–10, 2018.
[4] R. Susanti, R. Nofendra, M. Syaiful, and M. Ilhamdi, “The Use of Artificial Neural Networks in Agricultural Plants The Use of Artificial Neural Networks in Agricultural,” vol. 2, pp. 62–68, 2022.
[5] H. Muhammad and F. Al, “Rancang Bangun Sistem Positioning Mobile Robot Omnidirectional Wheel Menggunakan Stm32 Berbasis Fuzzy Logic Controller Muhamad Syariffuddien Zuhrie , I Gusti Putu Asto Buditjahjanto , Lilik Anifah Abstrak,” Pp. 547–555.
[6] Hidayaturrahman, Hadi, R., & Yulherniwati. (2020). Prototipe Robot Pengangkut Barang dengan Sistem Pengalamatan Lokasi di dalam Gudang. JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 1(3), 80 - 86. https://doi.org/10.62527/jitsi.1.3.13
[7] M. H. Gustiana et al., “Perancangan Sistem Kendali Nirkabel Robot Pengantar Barang,” vol. 5, no. 2, pp. 64–71, 2023.
[8] K. Arief, D. Purwanto, H. Kusuma, and A. L. Fuzzy, “Algoritma Menghadang Bola dengan Metode Fuzzy Logic untuk Robot Penjaga Gawang Sepak Bola Beroda,” vol. 7, no. 2, 2018.
[9] D. U. Rijalussalam, M. Budiyanto, and A. Mayub, “Trajectory Tracking pada Robot Omni dengan Metode Odometry,” vol. 8, no. 1, 2019.
[10] Zamri, Nurul Aqilah, M. Izham Jaya, Siti Salwani Yaakob, Hidra Amnur, and Shahreen Kasim. “Multidimensional Indicator for Data Quality Assessment in Wireless Sensor Networks: Challenges and Opportunities.” International Journal on Advanced Science, Engineering and Information Technology 14, no. 5 (2024): 1663–72. https://doi.org/10.18517/ijaseit.14.5.11492.
[11] D. E. Ardana, Y. Z. Maulana, and G. Wibisono, “Jurnal Nasional Teknik Elektro Digital PID Trainer Based On Arduino For DC Motor Speed Control With Ziegler Nichols Method,” vol. 3, 2025.
[12] R. Setiawan, H. H. Triharminto, and M. Fahrurozi, “Gesture Control Menggunakan IMU MPU 6050,” vol. 3, no. November, pp. 24–25, 2021, doi: 10.54706/senastindo.v3.2021.133